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Abstract

This paper is concerned with least squares probiems when the least
squares matrix A is pear 2 matrix that is not of full rank.

A definition of mmerical rark is given. It is shown that under
certain conditions when A has mumerical renk r there is a dis-
tinguished r dimensional subspace of the column space of A

that is insensitive to how it is app.oximated by r independent
colums of A. The consequences ~f this fact for the least squares
problem are examined. Algorithms are described for approximating
the stable part of the colum space of A.
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1. Introduction

In this paper we shall be concerncd with the follewing problem.
let A be an m x n matrix with m = n; and suppose that A is ncar (in
a sense *o be made precise later) a matrix B whosc rank is less than

n. Can one find a set of linearly independent columns of A that span

a good approximat:~n to the column space of B?

The solution of this problem is important in a mmber of applica-
tions. In this paper we shall be chiefly interested in the case where
the colums of A represent factors or carriers in a linear model
which is to be fit to a vector of observations b. In some such applica-
tions, where the elements of A can be specified exactly (e.g. the
anilysis of variance), the presence of rank degencracy in A can be
dealt with by explicit mathematical formulas and couses no essential
difficulties. In other applications, however, the presence of degeneracy
is not at all obvisus, and the failure tc detect it can result in meaning-
less results or even the catustrophic failure of the numerical algorithms
being used to solve the problem.

The organization of this paper is the following. In the next sec-
tion we shall give a precise definition of approximate degeneracy in terms
of the singular value decomposition of A. In Section 3 we shall show
that under certain conditions there is associated with A a subspace
that is insensitive to how it is approximated by various choices of the
colums of A, and in Section 4 we shall apply this result to the solution
of tix lecast squares probiem. Sections 5, 6, and 7 will be concermned with
alpurithms for selecting a basis for the stable subspace from among the




colums of A,

The ideas underlying our approach are by no means new. We use the
singular values ¢f the matrix A to detect degeneracy and the singular
vectors of A to rectiry it. The squares of the singuiar values are
the cigenvalues of the correlation matrix .»\T,\, and the right
singular vectors are the ¢igenvectors of ATA, that is the principal
components of the problem. The use of principal cowponents to eliminate
colincarities has heen proposed in the literature {c.g. sce [4,9,16,17]).
This paper extends these proposals in two ways. First we prove theorems
that express quantitatively the results of deciding that certzin columns
of A can be ignored. Second we describe in detail how existing compu-
tational techniques can be used to realize our methods.

A word on notation is approprinte here. We have assumed a linear
model of the form b = Ax ¢ e, where b is an m-vector of ohiservations
and x is an n-vector of parameters. This is in contrast %o the usual
rtatistical notation in which the model is written in the formy = X3 + e,
wherz vy is an n-vector of obsarvations and 8 is a p-vector of parameters.
Tle veason for this is that we wish e draw on a body of tiworems and
aigoritlms from mmerical linear a’uebra that have traditionally been
couched in the first notation. We feel that this dichotomy in notation be-
tween statisticians and mmerical analysts has hindered coemmication
between the two groups. Perhaps a partia® soiution to this problem is the
occasional appearance of notatior: from mmerical analysis in statisticai
journais and vice versa, so that each group may have a chance to learn the

other's notation,




Throughout this paper we shall use two norms. ‘ihe first is the

Euclidean vector norm i, defined for an n-vector x by

n

ad 2
Ixiy = ] X

i=1
and its subordinate matrix nomm defined by
§Aﬂ, = SW !lmgéza
“ §XH2=1

The second is the Frobenius matrix nomm defined for the m » n matrix A by

2. oOR
HAllg = .1,1 ’213‘).
18 J:

Both these noms are consistent in the sense that
{AB]| = #IAil_UB: = 2 F
l iip i p} }p r ,F)

wvhenever the product AB is defined. They are also unitarily invariant;
that is if U and V are orthogonal matrices then

| = i 1 = =
HA.HP Y A!!p itAVl!p p = 2,F).
for more on these matrix noms see [14].

2, Rank Degeneracy

The usual mathematical notion of rank is not very useful when the
matrices in question are not known exactly. For example, suppose that A
is anm x n matrix that was originzlly of rank r < n but whose clements
have heen nerturbed by some small errors (e.g. rounding or measurement
crrors). It is extremely unlikely that these grrors will comspire to

keep the rask of A exactly cqual to r; indeed shaz is wost likely is
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that the perturbed matrix will have tull rank n. Nonetheless, the
ncarness of A to a matrix of defective rank will often cause it to
behave crratically when it is subjected to statistical and mmerical
algorithns,

One way of circumventing the difficulties of the mathematical
definition of rank is to specify a tolerance and say that A is rameri-
cally defective in rank if to within that tolerance it is near a defective
matrix. Specifically we might say that A has ¢-rank r with respect

to the nomm [l if
2.1) r = inf {rank(B): ||A-Bll < ¢}.

However, this definition has the defec: that a slight increase in -
can decrease the mmerical rank. What is needed is an upper bound on
the values of ¢ for which the mmerical rank remains at least equal to

r. Such a mmbir is provided by ary number & satisfying
(2.2) £< 6 <sup {n: |A-Bl] =n =» rank(B) = r}.
Accordingly we make the following definition.

Icfinition 2.1. A matrix A has mmerical rank (6,¢,r) with

respece to the norm  fi+fl if 6,¢, and r satisfy (2.1) and (2.2).

When the nom in definition 2.1 is either the 2-nomm or the Frobenius
norn, the problem of determining the mmerical rank of a matrix can be
solved in terms of the singular value decomposition of the matrix. This
decomposition, which has many applications (e.g. see [7]), is described in

the following theorem,




i Bt ]

W

Then there

Theorem 2.2. let A beanm - nmatrix withm -

is an orthogonil matrix U or order m and an orthogonal matrix V

order n such that

2.3) UAV =

L= diag(nl,crz,... ,cn)

For proofs of this theorem and the results cited below see [14].

mmbers Gy 9CgseeesOps which are unique, are called the singular values
of A. The columns Ugslyse e,y of U are called the left singular
vectors of A, and the columns VisVgseee,V, are called the right singular

vectors of A, The matrix A has rank r

(2.4) Or > o = Ur*l’

in which case the vectors u,,u,,...,u, form an orthonormal basis for the

column space of A (hereafter denoted by R(A)).

if and only if

It is the intimate relation of the singular values of a matrix to

its spectral and Frobenius nomms that enables us to characterize mumeri-

cal wank in terms of singular values.

is given by the expression.

Specifically the spectral norm of

!
i
]
3
i

HAlly = oy




LTI O T Rt S N )

-6 -

Morcover, if Tty T ees oA are the singular values of B = A + [, then

loi-1il - !Ilil;z (i =1,2,...,n).
In view of (2.4) this implics that

(2.5) inf IA-Bl, = o

rank(B} <r 1’

and this infims is actually attained for the matrix B defined by

z'
(2.6) B=1U v,
0

where 7' = diag(ol,oz,...,cr,o,...,0).
Likewise

)
I = of ¢ od s ol w7,

and
< ; 2_ 2 2
inf JA-Blc =0l ., *+ ... ¢+ 0,
rank(B)<r F ool n
The infimm is attained for the natrix B defined by (2.6).
Using these facts we can characterize the notion of mmerical rank.

In the following theorem we use the notation rank (5,c,r)p to mean mmeri-

cal rank with respect to the nom !l‘!!p-

Thcorem 2.3. Let 0] 20y 2 ... 20 be the singular values of A,

Then A has mmerical rank (t',,e:.r)2 if and only if

2.7} g. =8> 20

— = - B _ | S ——. A ——r——
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Also A has numerical rank (5, e,r)F if and only if

2 2 2 2 2 2 2
- > + .
G.‘. + Uﬂl + LN ] + on - 6 > € 2 Or’l + e e On

Proof. We prove the result for the spectral nom, the proof for
the Frobenius norm being similar. First suppose that (2.7) holds. Then
by (2.5) if %:B-A!iz < 6 we must have rank (B) > r. Consequently 5 satis-
fies (2.2). This also shows that

min {rank(B): {iB-A}l = ¢} 2 T.

But the matrix B of (2.6) is of rank r and satisfies {{A-B)!z < ¢
Hence < satisfies (2.1).

Conversely, suppose &,c, and r satisfy (2.1) and (2.2). Then
by (2.5), & = o Also ¢ = Crep’ for if not by (2.1) there is a matrix
B of rank r satisfying I'A-Bj < Opap? which contradicts (2.5).n

Because of the simplicity of the characterization (2.7) we shall
restrict ourselves to rank defectiveness measured in terms of the spectral

norm.

We shall need two other facts about singular values in the sequel.

First define

(2.8) inf(A) = inf Axl,.
5?:&!!2'1 -

Then
inf(A) = n

where %N is the smallest singular value of A. Second, let X and Y

he any matrices with orthonormal colums and let T T T Ty be

o =S =T T -

kS L il

el e
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the singular values of C = XTAY. Then

(2.M 0. T T. (i=1,2,...,k)

1 1
and
(2.10) Teie] Z0ge; (= L2k

3. ‘The e-Section of R(A)

Having confirmed that a matrix A has numerical rank (5,¢,1),
with r < n, one must decide what to do about it. If the singular value
decomposition has been computed as a preliminary to determining the
numerical rank, one solution naturally presents itself. This is to work
with the matrix B defined by (2.6). Becausc B has an explicit repre-
sentation in tems of X', the usual difficulties associated with zero singular
values can be avoided. Moreover, the solution so obtained is the exact
solution of a small perturbation of A.

However, this solution has the important defect that it does not
reduce the size of the problem. For example, if the problem at hand is
to approximate a vector of observations b, the procedure sketched above
will cxpress the approximation as a linear combination of all the colums of
A, cven though some of them are clearly redundant. What is needed is a
device for selecting a set of r lincarly independent columns of A.
In Sections 5 and 6 we shall discuss numerical technigues for actually
making such a selection. In this section and the next we shall concern
oursclves with the question of when making such a sclection is sensible.

The main difficulty is that there are many different scts of




-9 -

linearly independent columns of the patrix A, and not all these
sets may be suitable for the problem at hand. For example, if the
problem is again that of approximating a vector of observations b,
then for each set of columns we shall attempt to find a vector in
the subspace spanned by the columns that is in some sense a best
approximation to b. Now if the subspace determined by a set varies
widely from set to set, then our approximation to b will not be sta-
ble. Therefore, we turn to the problem of detemining when these
subspaces are stable.

We shall attack the problem by comparing the subspaces with a
particular subspace that is determined by the singular value decomposition.
Let A have numerical rank (6,e,r). Let the matrix U in (2.3) be

partitioned in the form
U= ,0),

where Ua has the r columns UpsUssees sl Then we shall call R(Ur)

r
the t-section of R(A). Note that the c¢-section of R(A) is precisely the
colunn space of the matrix B defined in (2.6).

We shall compare subspaces in terms of the difference of the ortho-
gonal projections upon them. Specifically for any matrix X let Px
denote the orthogonal projection onto R(X). Then for two subspaces R(X)
and R(Y) we shall measure the distancc between them by HPX-PY¥2 (for
the various geometric interpretations of this number, which is related
to canonical correlations and the angle hetween subspaces, see [1,2,13]).

It is known that if Y has orthonormal colums and £ has orthonormal

e e e A e g R T SR e
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P columns spanning the orthogonal complement of R(X), then
(3.1) IPy-Pll, = IRY]
) X y"2 2

The selection of r colums a. ,a. ,...,a. from the matrix
h' 1 1p
A= (al,az,...,an) has the following matrix interpretation. Let W

be the n x r matrix formed by taking columns il’iZ""’ir from the n x n

,...,ﬂ. ) = ’\w.
2 lr

identity matrix. Then it is easily verified that (ai TH
1 "2
Of course WTW =], so that | has orthonormal colums, and this is all

that is needed for the following comparison theorem.

Theorem 3.1. Let A have numerical rank (5'5"')2 and let U8

be defined as above. Let W be an n x r matrix with orthonomal columns

and suppose that

(3.2) v = inf(AW) > 0,

where inf(X) is defined by (2.8). Then

(3.3) "pue'pmnz = C/Yo

Proof. The matrix WTATAW is positive definite and hence has a

nonsingular positive definite squarc root. Set Y = AW(WTATAW)"U 2. It
is casily verified that Y has orthonormal columns spanning R(AW).

Morcover, from (3.2)
(3.4) reTA ) 2 =

The matrix ﬁr_ also has orthonormal colums, and they span the orthogonal
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complement of R(UC). It follows from (2.3) that
(3.5) WAl = ¢

Hence from (3.1), (3.4}, and (3.5)

10 AW(WTATAwr y /2

" AWl!Z ”2

1A

0 AL Wi 1 ATy 12y,

A

e/y.o

Theorem 3.1 has the following interpretation. The number y measures
the linear independence of the columns of AW. If it is small compared to
AW then the columns of AW themselves must be nearly dependent. Thus
Theorem 3.1 says that if we can isolate a set of r colums of A that
are strongly independent, then the space spanned by them must be a good

approximation to the e-section R(UF).

However, there are limits to how far we can go with this process.

By (2.8) the mmber y satisfies Op T Yy and by the definition of mmmeri-
cal rank ¢ = el Consequently, the best ration we can obtain in (3.3) is
p41/9pe Thus the theorem is not very meaningful unless there is a vell
defined gap bhetween Oral amd c.. One cure for this problem is to in-
crease ¢ in an attempt to find a gap; however, such a gap need not cxist
(e.g. supposc Oie1 = oi/Z (i=1,2,...,n~1)). What to dd when the matrix
A exhibits a gradual rather than a precipitous decline into degencracy

is a difficult problem, whose solution must almost certainly depend on

additional information.
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A sccond difficulty is that it may be impossible to obtain the
ideal ratio because in practice we must restrict our choice of W to

F columns of the identity matrix; i.e. we must choose from among columns

of A. That this is a real possibility is shown by the following example.

Example 3.2. Let e denote the vector (1,1,...,1)T with n
components. The matrix

T
o e
n n n

has singular values 1,1,...,1,0, so that it has numerical rank (l,o,n-l)z.
Thus we should like to remove a single column of A a t° obtain an approxi-
mation to the 0-section of A. Owing to symmetry, it does not matter which
column we remove. If we remove the last one, the resulting matrix Ar'x

has the form

T
N =E - cMe(n-1)
n n

where En consists of the first n-1 columns of the identity matrix.

Thus
Al .e(n*l) . | e(n-l) -l e(nnl) ]
AT AT\ LA

! 1)
AT \ n-1 ’

from which it follows that




y = inf(A)) s—;—; :

It should be observed that the factor n'l/ 2

exhibited in the

example is not extremely small. For n = 25 it is only 1/5. Unfortunately
no lower bound on y is known, although with the computational algorithms
to be described in Sections 5 and 6 it is easy enocugh to check the com-
puted value.

A final problem associated with Theorem 3.1 is that it is not
invariant under scaling. By scaling we mean the multiplicative scaling
of rows and colums of A and not additive scaling such as the subtrac-
tion of means or a time factor from the columns of A (this latter
scaling can be handled by including the factors explicitly in the model).
Since by multiplying a colum by a sufficiently small constant onc can
produce as small a singular value as one desires without essentially alter-
ing the model, Theorem 3.1 can be coaxed into detecting degeneracies that
are not really there. This means that one must look outside the hypo-
theses of Theorem 3.1 for a natural scaling. While we are suspicious of
pat scaling strategies, we think that the following criterion is reasen-
able for many applications. Specifically, the rows and colums of A

should be scaled so that the eirrors in the individual elements of A are




T

=1
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as nearly as possible equal. This scaling has also been proposed in
{4}, and an efficient algorithm for accomplishing it is described in
{5].

The rationale for this scaling is the following. ~from the defini-

tion of the singular value decomposition it follows that
A\ri = o;u, (i=1,2,...,n).

Now if we imagine that our matrix is in error and that our true matrix

_is A + E, then
(3.6) (A*E)v, = o.u. + Ev,.

~ If we have balanced our matrix as suggested above, then all of the elements
of E are roughly the same size, and llEviuz = fIEll,. Thus if loi! s IEll5,
-equation (3.6) says that up to error \f} is a null vector of A + E, and
the matrix is degenerate.

We recognize that this scaling criterion raises as many questions as
it answers. An important one is what to do when such scaling cannot be
achicved. Another question is raised by the observation that in regres-
sion row scaling is equivalent to weighting observations, which amounts
to changing the model.* Is this justified simply to make Theorem 3.1
meaningful? Although this question has no easy answer, we should like to
point ocut that it may be appropriate to use one scaling to eliminate

colincarities in A and another for subsequent regressions.

*
We are indehted to John Chambers and Roy Welsh for pointing this out,
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In the next section we are going to examine the implications of
‘Theorem 3.1 for the linear least squarcs problem in which a vector of
observations b is optimally approximated in the 2-norm by linear combina-
tions of the columns of A:

b = Ax.

.

In some applications the 2-norm is not the best possible choice, and one
may wish to minirize ¢(b-Ax), where ¢ is a function that may not even
be a nom. For example, in robust regression one approach is to minimize
a function that may reduce the influence of wild points. We shall not pur-
sue this subject here; but we believe that Theorem 3.1 has important impli-
cations for these problems. Namely, if we are scarching for an approxi-
mation to b in R(A}, we cannot expect the solution to be well determined
unless R(A) itself is. Theorem 3.1 provides a theoretical basis for
finding stable subspaces of R(A); however, specific theorems must wait
the development of a good perturbation theory for approximation in nomms
other than the 2-nom.

4. The Linear Least Squares Problem

In this section we shall consider the linear least squares problem
(4.1) minimize [b-Ax|Z.

It is well known that this problem always has a solution, which is unique
if and only if A is of full column rank. At the solution, thz residual

vector

r=bh - Ax
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is the projection of b onto the orthogonal complement of R(A).

When A has mmerical rank (S,e,r)z, the sclution to (4.1) may
be large, and some of the individual components of the solution will
cert;linly have large variances. If the ratioc ¢/& is sufficiently
smill a stable solution can be computed by restricti:.g oneself to the
e-section of A. Computationally this can be done as follows. Defire
U, and _ as in Section 3, and further definc

Va = (vl,vz,...,vr), Ve = (vﬂl,...,vn)

Z, = diag(al,cz,...,or), ﬁe. = "ia‘g("rﬂ"""’n)'
Ther: the matrix B of (2.6) is given by
B=Uz V.
ee ¢
Morcover the vector
x, =V T
is the unique solution of the problem of minimizing
lib-Bxil,

that is of minimwm 2-norR. It is easily seen that

rc=b-Ax€=b-Bxc.
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As we indicated in the last scction, this solution is not entirely
satisfactory, sip.2 it involves all the columns of A, whercas we might
hope to obtain a :atisfactory representation of b in temms of r
suitably chosen columns; that is with a model having only r carriers.
It is a consequen:e of Theorem 3.1 that any set of + reasonably inde-
pendent columns will do, although in practica additid:al considerations
may make some choices preferable to others.

Theorem 4.1. Assuming the notatiorn and hypothesis of Theorem 3.1,
let x and r, be defined as above. Let Yy ba the solution of the

linear least squares problem
e . 2
minimize ub-AWynz
and let Ty be the residual
T ™ b - Al\y“..
Then
"rc’rwnz

< efy.

Proof. By the projerties of the least squares residual
r = (I-Puc)b and Ty ™ (I-Pm)b. Hence

lir - ryly = 1 “’uc"’m"’"z = 3 b0

Theorem 4.1 partially answers a question raised by Hotelling [10];

namely if carriers are chosen to eiiminate dependencies, what guarantees
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that one such set will not fit b better than another? The answer is
that if there is a well defined gap between & and ¢, then any set of
r strongly independent columns will give approximately the same resi-
dual. However, there remains the possibility that by including more

columns of A a considerably smaller residual could be obtained. We

stress that such a solution canmnot be very stable. By (2.8) any matrix
consisting of more than r columns of A must have a singular value
less than or equal to ¢, and it follows from the perturbation theory
for the least squares problem [15] that the solution must be sensitive
to perturbations in A and b. (Another way of seeing this is to note
that <% isa lower bound for I(ATA) "I, so that the solution must have
a large covariance matrix.)

However, one might be willing to put up with the instabilities in the
solution provided it gives a good approximation to b. We shall now show
that any solution that substantially reduces the rcsidual over T, is not

only unstable, it is also large.

Theorem 4.2, Let r, be defined as above. Give: the vectrr x, let
r=b-Ax. If !ircﬂz > llrllz, then

ﬂrt" 2" "rﬂz

1 >
l’x" 27 c

Proof. let z = \’Tx and ict
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; where c¢ is an n-vector. Then if we partition z = (z:,i‘:)T and

c = (CZ,GZ)T conformally with the previous partitions of U, V, and
¥, we have
T T ..2
irll3 = 1T (b-awx) 1
c P 2
= - 2z
= fic-zzi + yai
- . a2 o a 2
le,-zz5 + 1E.-2 2 115 + 1y,
Consequently
Z » & & a 2 ] 2
4.2) Iz = i€, 2,15 + lidi.

Now the vector y, * \"Txe is given by

: -1
TN

so that

. 2 -
4.3) e 15 = 1€ 13 + nand.

From (4.2)

‘ 2- 2 ~oa A LI [ ~
.“'"2'-"6"2 z !'Cs“éazcﬂz > iic !IZ - Hzellzuzcﬂz

€

;A - ~ i
2 !sce!iz 5"281:2'
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Hence

ety 12- a1

€

Ixll, = 12l =

’

and from (4.3)

Aol - A i
- [ 3

el - iy
- 1A

The theorem shows that even a slight decrease in the residual must
result in a great increase in the size of the solution. It is hardlyv
necessary to add that a large solution is seldom acceptable in practice:
it must have high variance, and it may be physicaily meaningless.

The results of this section have implications for a common practice
in data analysis, namely that of fitting a large mmber of subsets of the
columns of A in an attempt to obtain a good fit with fewer than the full
complement of columns (for example, see [6]). We have, in effect, shown
that if the ratio ¢/s is reasonable, this procedure is not likely to be
very productive. Any set of r independent columns will give about the
same residual, and any larger set that significantly reduces the residual
must produce an unacceptably large solution. There are, however, two cases
where this procedure might be of some help. First when it is hoped that
fewer than r columns can produce a good fit, and sccond when the ¢-6
ration is not very small. An approach to the second problem that uses the
singular valae decomposition of the augmented matrix (A,b) is described
in (9} and [26,17].
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S. [Ixtraction of Independent Columns: the QR Factorization

We now turn to the problem of extracting a set of mumerically inde- ;
pendent. columns. The first meth~J we shall consider is based on the QR
factorization of the matrix A. Specifically, if A is anm » n matrix

withm 2 n, then A can be written in the form

A = (R,

where Q has orthonormal columns (QTQ=I) and R is upper triangular.
If A has full column rank, then the factorization is unique up to the
signs of the columns of ( and the corresponding rows of R. It should
be noted that the columns of Q form an orthonormal basis for R(A).

A knowledge of the QR factorization of A ecnables one to solve the
leasi squares problem (4.1). Specifically, any solution x of (4.1)

must satisfy the equation
Rx = Q'b,

which can be easily solved since R is upper triangular. Morcover, since

ATA = RTR, we have

@yl - 1T

so that one can use the matrix R in the factorization to estimate the

covariance matrix of the solution.

An especially desirable featurc of the QR factorization is that it

can bhe used to solve a truncated least squares problem in which only an
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initial set of colums are fit. If A!" denotes the matrix consisting
of the first r colums of A and R'T denotes the leading principal

submatrix of order r of A, then

IT !?.

(5.1) AT = 'R

Since R! is upper triangular and er has orthonormal columns,
equation (5.1) gives the QR factorization of AlT and can be used as
described above to solve least squares problems involving AlT,

The basis for using the QR factorization to extract a linearly
independent set of columns from the matrix A is contoined in the

following theorem.

Theorom 5.1. Let the QR factorization of .\ be partitioned in the

forn

R
(ApA) = (@ .Qz)(R“ ”)

o xr ¢ pFXY
where A,,Q eR" and Ry, €RT.If
HRZZL'Z ®E <= inf(Ru‘.
then A has rank (6,5,!’)2. Moreover,

inf(Au) = 5.

Proof. Because the columns of Q are or ‘onormal, the singular
values of A and of R are the same. Now & is the r-th singular
value of !1“. and hence by (2.9) & is less than or equal to the r-th
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singular value of A; i.e. o, = 6 Likewise from (2.10), ¢ 2

r Ore1®

Thus A has rank (6,¢,r). Moreover, since Q1 has orthonormal columns,
inf(Al) = inf(QIRn) = inf(Rll) = 6.0

The application of this theorem is obvious. If, after having
computed the QR factorization of A, we encounter a small matrix Ryy
and a matrix R11 with a suitably large infinum, then the columns of
l\l span a good approximation tc the r-section of A. Because
of (5.1), we have at hand the QR factorization of .1\l and can proceed
immediately to the solution of least squares problems involving Al‘
There remain two problems. First how can one insure that the first r
colums of A are linearly independent, and second how can one estimate

inf (Rn)?

The solution to the first problem depends on the method by which the
QR factorization is computed. Probably the best numerical algorithm is
one hased on Houscholder transformations in which the QR factorizations
A' k. Q'kan are ~omputed successively for k = 1,2,...,n (e.g. sec [14]).

'k and Rrlz are computed, there is  the

At the k-th step, just before Q
possibility of rep .acing the k-th column of A by one of the columns
UUOTT WOTRERNL W I€ the column that maximizes the (k,k) - element of

R is chosen to replace s then there will be a tendency for indepen-
dent columns to be processed first, leaving the dependent columns at the
end of the matrix. An ALGOL program incorpo:..ing this "column pivoting'

is given in [3] and a FORTRAN program is given in [11].

= T T TR LT - T T I L et
i R ER ML s 0 s e s3- S LG S S A S S S A S s Rl S e
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Once a satisfactory QR decomposition has been calculated, we can
estimnte "R22"2 by the bound

Rylly = AR5 TR, ST

where
\ Xy = maxx |x;|
) i i
and
iXI, = max 2 |x..]|.
i o3 Y

Likewise one can estimate inf (Ru) by computing Rii (an easy task

since Rll is upper triangular) and using the relations

: = ! 'l 'l 1
mf(Ru) = .IRHIIZ > - -
v’lanHlllRu!lw

*

The procedure sketched above is completely reliable in the sense
that it cannot fool one into thinking a sct of dependent colums are
independent.  However, it can fail to obtain a set of linearly indepen-

dent columns, as the following cxample shows.

Ixample 5.2.  Let A be the matrix of order n - illustrated below

for n = §:
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T RS V2" S V2. SRS V2 SS VIV 3
0 yz -yA YA -5

Ag=1] 0 0 /3 -1//% -1//5
0 0 0 1//% -1/
\ 0 0 0 0 1//8 }

Letting x;l; = (1,/7/2,]3/4,/1'/8,...,/E/Zn'l), it is easily verified that

where cT = (1,1,...,1). Thus An has the approximate null vector Xn
and must have nearly dependent columns. However, computing the QR factori-
zation of A,» even with column pivoting, leaves A N undisturbed. Since
no element of An is very small, we shall have Ry, void; i.e. no depen-
dent column will be found.

It should be observed that in the above example there is no danger
of the degeneracy in An going undetected. Since RZ2 is void, Rll = A n
and any attempt to estimate inf(ku) will reveal the degencracy.

It may be objected that the matrix An in Example 5.2 shows an
obvious sign of degeneracy; viz. its determinant (n!)’I/ 2 goes rapidly
to zero with increasing n. However, the matrix lAnl, obtained from A
by taking the absolute value of its elements, has the sume determinant
vet its columns are strongly independent. Thus the example confimms a
fact well known to practical computers: the value of a detemminant is

o g . . .
worthless as an indication of singularity.
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xtraction of Independent Columns: the Singular Value Decomposition

When the singular value decomposition of A has been computed (an

ALGOL program is given in [8] and a FORTRAN program in [11]), a different

way of selecting independent columns is available. The method is based on

the following ‘heorem.

Theorem 6.1. Let A have the singular value decomposition

A
ufay = ) .
6

!

let V be partitioned in the fom

V= ( vcl 081 ) ,
VcZ VaZ

where Vt_'1 isr xr, and let A be partitioned in the form

where Al has r colums. Let 6 = o, ¢

A= (ApsAy),

r =o”1and

Y=6 i"f(vu)'

Then A has numerical rank (5,¢,T) 2 and

6.1 inf{Al) Y.

Proof. The fact that A has mmerical rank (6,c,r)Z follows

immediately from Theorem 2.3. To establish (6.1), observe that if we

write
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AV = § = (Sl,SZ)

where S1 has r colums, then S}'S2 = 0. Now since A = SVT, we have

T o T
A =5V * SV

T .
Since SISZ 0,
inf(A)) = inf(SIVEI) > inf(Sl)inf(Vzl)

= o, inf(Vsl) = v,0

As with the QR factorization, Theorem 6.1 provides us with a way of
determining when an initial set of r colums of A are independent.
Since an initial set may be degenerate, we must adopt some kind of inter-
change strategy to bring an independent set of columns into the initial

positions. If P is any permutation matrix, then
Z
v p) @) = (0)

so that in the singular value decomposiiion an interchange of columns of
A corresponds to an interchange of the corresponding rows of V. This
suggnasts that we exchange rows of V until inf (Ve.l) becames acceptably

large. One way of accomplishing this is to start with the r x n matrix

T_ AT T
Vi = VeVl

and compute its QR factorization with column pivoting to force a set

of independent columns into the first r positions. Alternativel; one
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could apply an algorithm such as Gaussian elimination with complete
pivoting to V'{ (e.g. see [14]).

If cither of the above suggestions is followed, the final matrix
VL, will be upper triangular, and its infimm can be bounded by the method
suggested in the last section.

If r is small, significant savings can be obtained by observing
that the singular values in [0,1) of Vel and \752 are the same (see

the appendix of [15] for a proof). Thus one can start with the smaller

matrix

T T of
(6.2) ‘2 = ("el’vcz)

and use the QR factorization with column pivoting to determinc the
dependent columns of A. Note that when r = n-1 the column to be stricken
corresponds to the largest clement of the row vector V'g.
The question of whether to use the QR factorization or the singular
value decomposition is primarily one of computational efficiency. Although
Example 5.2 shows that the QR factorization can fail to isolate a set of
independent columns in a case where the singular value decomposition does,
this is an unusual phenomenon (see Example 7.2) and in most cases the QR
factorization with column pivoting is effective in locating independent
columns. When m  is not too much greater than n, the calculation of the

singular value decomposition is considerably more expensive than the

calculation of the QR factorization, and it is more efficient to stick with

the latter, if possible.
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When m >> n, we can begin by computing the QR factorization of A.
The matrix R has the same singular values as A, and indeed if

(6.3) TRV = 2

is the singular value decomposition of R, then V is the matrix of
right singular vectors of A. Since R is an n x n matrix, the reduc-
tion (6.3) is computationally far less expensive than che initial com-
putation of R, and there seems to be no reason not to use the singular

value decomposition.

7. Examples

In this section we shall give some examples illustrating the pre-

ceding material. The mmerical computaticn.: were done in double precision

on an IBM 360; i.e. to about sixteen decimal digits.

Example 7.1. This example has been deliberately chosen to be un-

complicated. For fixed n, let

=1 -2eel
HnInee,

where eT = (1,"y...,1). It is easily verified that H n is orthogonal.
Let
2 = diag(1,1,1,1,1,0,0,0,0,0)

and
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Then A has five nonzero singular values equal to unity and five zero
singular values, and thus it should have five linearly independent
columns.

The singular values of A were computed to be l,l,l,l,l,.SleO'u’,
0,0,0,0, so that A can be regarded as having rank (1,¢,5) where
£ = 10'16. The pivoting strategy described in Section 6 was used to
isolate a set of five lincarly independent columns. These turned out to
be colums 1,2,4,5, and 9. The associated matrix Vc1 had an infimum
of .45 which is very closc to the optimal value of unity. As a final

check, we compute IiPU 'PAN"’ where W = (el,ez,e4,e5,e9) is the matrix
€

“that selects the independent colums from A (cf. Theorem 3.1). The

result is
IPy -Pyyll, = .37 x 2074,
A

which shows that columns 1,2,4,5, and 9 of the matrix A almost exactly
span the e-section of A.

The QR factorization with column pivoting that is described in Sec-
tion 5 was also appiied to A. The pivot columns and their norms were

.89
.86
.81
.71

.44
-16
.45 x 10 30

13 x 107
0
0

0

CWOWN-OWLINDAW,

(]
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If the gap is taken to lie after the fifth vector we have
i = = 20 -16

Thus the QR factorization exhibits the same sharp gap as the singular
value decomposition. However, the five columns 2,3,4,5, and 6 desig-
nated as independent are different from those chosen by means of the
singular value decomposition. Nonetheless, for W = (ez,es,e4,e5,e‘,')

we have

upbe-gAuu = .37 x 10714,

so that this choice of colums is as good as the one predicted by the
singular value decomposition.
Incidentally the estimate of ”R22"2 using the 1- and «-nomms i-

V"“ﬂzlllhkzzn. = ,04 x 10-16,

&

which is not a gross overestimate.

Example 7.2. This is the matrix Ay of Example 5.2. The singular

values of this matrix are

01=3c7,02.106,o00’0243031,(’25’077 X 16-7.

Again there is a well defined gap, and we may take A to have rank
(.31,¢,24) where ¢ = 107’. This time there is only a single dependent
vector whichecan be found by looking for the largest component of the
right singular vector Vv, corresponding to oys (cf. the comments at

equation (6.2)). This component, .75, is the first, which indicates
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that column one should be discarded. Yor this sclection we have

-7
IIPUC- AW"Z = .49 x 10 ',

In principle, the QR factorization should fail to isolate a depen-

dent colum of AZS' However, because the elements of A25 were
entered with rounding error, the pivot order with column norms turned

out to be
1 1.0
25 .98
6 .88
24 37
2 "15 x 10716

This again gives a well defined gap and indicates that column 2 should
be thrown out (the second component of Vg is .53 so that also from the
point of view of the singular value decomposition the second column is

a candidate for rejection). For this subspace we have

= -6
IIPUC-PMH 11 x 10 7.

Thus the QR factorization gives only slightly worse results than the
singular value decomposition, in spite of the fact that the example was

concocted to make the QR decomposition fail. *

xample 7.3. To show that our theory may be of some use even where
there is not a sharply defined gap in the singular values, we consider the

Longley test data [12], which has frequently been cited in the literature.
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°
Since it is a common practice tc subtract means from raw data, we have

included a colum of ones in the model. Specifically the columns of
A are as follows:
1 -- ones
2 -- GNP {mplicit Price Deflator, 1954 - 100
-- GNP
- - Unemployment
Size of armed forces

-~ Noninstitutional population = 14 years old

~3 [ W L w
’
‘

-~ Time (years)

The scaling of this data will critically affect our results. For the
purposes of this experiment we assume that columns two through six are
known to about three significant figures. Accordingly each of these
columns was multiplied by a factor that made its mean equal to 500.
The column of ones is known exactly and by the equal error scaling
criterion ought to be scaled by a factor of infinity. As an approxima-
tion we took the scaling factor to be 1010.

The column of years can be treated in twe ways. First the errors in
the time of measurement can be attributed to the column itself, which
would result in the column being assigned a low accuracy. However, we
ohserve that any constant bias in the time of measurement is accounted
for by the colum of ones, and any other errors can be attributed to the
measured data. Consequently we have preferred to regard the years as
known exactly and scale the seventh column by 1010.

The singular values of the matrix thus scaled arc
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.78 = 1014

.94 x 10
.58 x 10
.26 x 10
.26 x 10
.22 x 10
.51 x 10

w N ®

fand 2 I S

Since the error in A is of order unity, /he last singular value must
be regarded as pure moise, and we may take A o have rank (22,5.1,6)2.
The largest component of the seventh singular vector is the sixth and has
a value of .90. When the sixth column is removed from the matrix, the

resulting subspace compares with US ;] s follows:
'lp -P I!ﬂ = 012.
' Us 4 MAW'2

The relatively poor detemmination of the S. --section of A suggests
that not much useful information can be obtaine: from a least squares
fit, cven when the sixth column is ignored. 1. next gap that presents
itself is between the fourth and fifth singular values. If we regard A
as having rank (260,26,4)2 and use the pivoting sirategy of Section 6 to
isolate a set of four independent columns, we choose columns 1,4,5, and 7

with
inf(Vel) = ,99].
For this choice of columns

P, p I,
Usec Py = 0.011,
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a far more satisfactory result.
If the QR factorization is applied to A, there results the follow-

ing sequence of pivot columns and norms:

7 .78 x 101%

.94 x 10
.47 x 10
.31 x 10
.24 » 10
.21 x 10
.57 x 10

[T - -]

[= 7 B oS T S 7) B
- NN W

This agrees completely with the results from the singular value decomposi-
tion. Either one or three columns should be discarded, and colums 6, 2,
and 3, in that order, are candidates.

Although these results indicate that columns 2, 3, and 6 should be
discarded from the model, they are not conclusive, since there may be
other sets containing some of these columns that give a satisfactory
approximation to the 260-scection ofe A. However, a singular valuc decomp.s-
ition of the matrix consisting of colums 1,2,3,6, and 7 gives the singular
values

.78 x 10

.94 x 10
.50 x 10
.25 x 10
.10 x 10

[-

N NN

which shows that none of these columns is a really good candidat: for inclu-
sion in the model.
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To sum up:  if the raw Longley data is taken to be accurate to three
significant figures, if vears are assumed to be exact, and if means are
subtracted from the columns, then the column corresponding to noninstitu-

[ ]
tional population is redundant, and the columns corresponding to the GNP

implicit price deflator and e GNP are so nearly redundant that their
inclusion in the model will affect the stability of the residuals from any

regressions.
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